CPRE 563 Project Proposal

Jake Hafele, William Zogg
Department of Electrical and Computer Engineering
Iowa State University, Ames, IA 50014

ABSTRACT

Many previous works in the past have highlighted the
benefits of FPGA acceleration for high bandwidth appli-
cations, such as machine learning. But, while hardware
specific accelerators in FPGA and ASIC applications can
speed up the computation time and bandwidth for a
specific task, the latency times can still be large. With the
rise in Computational Storage Devices (CSDs), including
SmartSSD, a new solution and platform can be utilized,
which closely integrates a SSD storage device and FPGA
on the same system. By utilizing a neural network image
inference application, we can determine the benefits
of SmartSSD for high bandwidth applications, which
may typically be accelerated on a traditional FPGA
accelerator platform.

[. INTRODUCTION AND MOTIVATION

With the rise of Machine Learning (ML) in com-
puters, increasing the throughput of these systems
is crucial in enabling their use in real situations
[1]. One such use is image classification, which is
not just computationally taxing, but memory-usage
too. FPGAs, with their long-standing presence, have
helped accelerate the computing tasks related to image
classification, but have not helped the bandwidth (BW)
demands of ML inferences [2].

Recent years have seen the development of Compu-
tational Storage Devices (CSD) [3]. With their unique
combination of speedy flash and a local FPGA, the
SmartSSD offers a way to accelerate ML inferences
by computing them close to their storage location,
without dealing with the memory pipeline latency in
a normal CPU-based system [4]-[6].

In this project, we aim to explore the benefits of a
SmartSSD implementation of a Neural Network (NN)
accelerator vs a traditional CPU system with a local
SmartSSD from ISU. Using a baseline NN for classifying
images via TinylmageNET, we will first evaluate the
throughput and accuracy of the host PC. Then, we will

evaluate the performance benefits seen from running
the inference on the SmartSSD by reducing the BW
bottleneck we would normally expect from our host
PC.

II. RELATED WORKS

A. Neural Network Inference with SmartSSD

There are multiple related works surrounding the
application of Neural Network Inference, similar to our
own Neural Network library, that have already been
created. These can act as a baseline for how to model
our code within the SmartSSD architecture.

In one such work, an architecture is proposed
which loads the weights of a neural network layer
directly from the SSD device within SmartSSD, and
the other inputs are loaded over a Peer to Peer buffer
from the host to the FPGA [7]. The purpose of this
architecture is to perform accelerated neural network
recommendation operations. Computations are then
performed within the FPGA, and then written back to
the SSD device over the shared PCle bus.

Another related work involves applying the kNN
algorithm on the FPGA within SmartSSD [8]. This
work utilizes Xilinx OpenCL, which is the same target
methodology we are using for our own project.

B. Other SmartSSD Applications

NeSSA provides another machine learning sample,
with a focus on machine learning subset training,
to achieve a speedup in the process by reducing
the dataflow [5]. This work also achieves a higher
performance by utilizing SmartSSD to achieve lower
latency between the storage device and computation,
by utilizing near-storage computation with SmartSSD.

Many other applications have also been utilized by
SmartSSD, such as data sorting [9]-[11] and query
processing applications [12], [13].

III. SOLUTION APPROACH

Our goal will be solved by utilizing an existing
neural network library that was developed in another
class at Iowa State, CPRE 487/587X, and applying
it to the SmartSSD platform. We will measure and
compare results for running an image classification on
a host platform and with SmartSSD to compare the
speedup for multiple image sets. We are expecting
to see marginal improvement with the SmartSSD
interface due to higher bandwidth allowance between
the SmartSSD and FPGA, alongside being able to utilize
more memory with the FPGA, unlike with the normal
amount of DRAM on an FPGA SoC.

A. Neural Network with Host

As a baseline for measuring performance gains
in SmartSSD, we will be running a neural network
implementation from CprE 487/587X on the host
SmartSSD server. This neural network combines several
convolution, dense, pooling, and soft-max layers to
classify images in the TinylmageNET dataset. We will
measure performance using the throughput of the
network. Once this neural network is up and running
on the host PC, we will utilize Vitis to run the model
on the SmartSSD without FPGA acceleration, making
necessary adjustments in the code compilation for it
to run properly.

B. Convolution Kernel

Once the original library is confirmed to work on
the SSD apart of SmartSSD on the host server, we
can begin working on synthesizing the C code for our
kernel design. This will require us to refactor our design
for the convolution layer with the longest execution
time, Layer 2, so that a new class is made for this
specific convolution layer. We can then break down the
convolution process such that a small enough kernel
can be synthesized and loaded onto the SmartSSD
FPGA with our target design. We will also gain timing
and utilization reports to estimate if our target kernel
design is feasible in the Kintex SmartSSD FPGA.

C. SmartSSD Application

Our first steps with the SmartSSD platform will be to
learn how to interface with the product. Another team
working with SmartSSD has added us to a Discord
server and created a user account on the SmartSSD
server. We have successfully gained access to the

server and gotten Vivado and Vitis to run on the
server through a server login. With this, we can run
validate commands to verify communication with the
SmartSSD utilizing xbutil commands.

Next, online resources and sample repositories will
be referenced for examples of how to use Peer to
Peer connection with the host code for our design.
This will enable us to communicate between the Host,
SmartSSD, and FPGA through the PCle switch inside
of SmartSSD. There are many sample projects which
can be both simulated and ran on the SmartSSD with
our target synthesizable convolution kernel.

D. SmartSSD Analysis

There are multiple existing works relating to
SmartSSD, which we can use as a basis to surround our
presentation discussion and results analysis. Our main
performance evaluation will focus on the execution
time speedup for the neural network inference between
the host and SmartSSD platform, as seen in other works
[4]. Other works analyze the training time for large
machine learning datasets, in which propogation delay
is compared against computation time. [5]. We believe
this would be an interesting opportunity to compare
the latency delays between the host and SmartSSD
data transfer, alongside the additional bandwidth with
SmartSSD.

E. Summary

Our work has the following key contributions:

« Verify existing CPRE487/587X neural network in-
terface works on SmartSSD server host

- Refactor library around synthesizable convolution
kernel

« Develop synthesized convolution kernel which can
be flashed on a Kintex FPGA

« Create reproducible SmartSSD host framework to
write to the SmartSSD, and perform direct peer
to peer operations between the SSD and FPGA
within SmartSSD

- Analyze execution time and latency delay between
the baseline Host CPU and SmartSSD kernel
application

IV. METHODOLOGY

A. Neural Network with Host

To run the CPRE487 library on the Host server
on the SmartSSD, we had to repartition and mount

SmartSSD. By calling Isblk -If we were able to identify
the SmartSSD SSD device name, which was nvmeOni.
We utilized fdisk to delete the existing old partitions
and create a new one with 20 Gb of size for our
group. This size provided enough space to install
our full codebase and store binary files that were
used in the layer operations. After formatting the
new partition with mkfs, we were able to mount the
partition to the Linux server with mount to our desired
directory. Within this mounted partition, we installed
our codebase and run our baseline unaltered software
to obtain timing results of the original design on the
SmartSSD storage device, without any FPGA kernel
running.

B. Convolution Kernel

Before we could begin synthesizing any code for our
Convolution kernel, we first had to refactor the existing
code for the target convolution layer, layer 2, such that
we could strip it down to the most basic function. To do
this, we created a new class for the Layer 2 convolution,
titled Convolution HLS (High Level Synthesis), with the

goal of synthesizing the lowest level of the operation.

In the original design, the three innermost nested for
loops in the design contain a convolution operation
over a single output data point. We determined this
was the best function to use for our kernel since it
would provide 800 pipelined computations, which was
small enough to fit on the FPGA, while still providing
room for benefit with high bandwidth reads to/from
the FPGA/SSD.

For this, a new function computePointHLS was
designed, as seen in Figure |1} Designing this function
was challenging, since we were required to flatten
the existing function arguments of 3D and 4D floating
point arrays to 1D arrays, to ensure that the code could
be synthesized in Vitis HLS and use existing memory
interfaces in Vitis. This made the computation much
easier to synthesize, but required more refactoring
in the parent Convolution function, which used a
data struct with multidimensional 4D arrays. To flatten
this, we utilized internal 1D arrays which would be
rebuilt for every convolution point, to act as inputs to
computePointHLS.

With the code designed and rerun, we could verify
the same functionality after refactoring, to guarantee

we did not lose any accuracy due to coding errors.

Multiple challenges came up when engaging with Vitis

mode

L

port=dataln
port=datalut_ init
port=layeriWeight
port=layerBias
port=dataOut_final

mode
mode

oL

mode
mode

L

dataOut_Internal = dataOut_init[e];

for i=8;1i<3
datalut_Internal +=

taIn[i] * layerWeight[i];

dataOut_Internal += layerBias[@];

dataQut_final[@] = dataOut_Internal;

Figure 1: Original Kernel Code

HLS, to synthesize the target kernel computePointHLS.
One such being the communication interfaces. After
researching different Vitis HLS memory interfaces, we
determined m_axi would be appropriate for streaming
a series of array values as a pointer input.

After running Vitis HLS synthesis, we recieved
a synthesis report which gave us estimated timing
performance for the kernel, and utilization of the FPGA
kernel which would be flashed to the SmartSSD Kintex
FPGA.

After running the first kernel synthesis, we learned
from the reports that the computation time was far
greater than we expected. This was due to unoptimal
floating point calculations which had greater than 1
cycle of delay, which led to issues when trying to
pipeline the target design. We also faced challenges
with under utilizing the data bandwidth and overall
memory storage of the system, and we ended up
running more computation points per kernel call.
Specifically, we determined that we could fit up to
1024 kernel calls worth of data into the FPGA at once
in the local DRAM inside the FPGA. We measured
kernel calls for 40, 90, and 1024 points in our final
results. This meant that we needed to store 1,638,400
floating point input values in our FPGA at one time,
versus the initial 1,600. This led to much less overhead
in timing.

The following optimizations were made on the
kernel:

. Using 2 seperate m_axi input busses

. Utilizing Loop Unrolling to parallelize computa-

tion of single convolution point

- Executing multiple convolution points in one
kernel call
The code in Figure [2| represents the optimized
kernel, which incorporates loop unrolling (32 values
in parallel), input axi memory busses (2), and another
for loop to run for NUM_POINTS (1024) convolution
point iterations.

computePointHLS dataln, dataout_final

a H mode=m_axi

layerWeight,

a Hi e=m_axi port=dataOut_final bundle=gmem@
temp_add

point = @; point < ; point++

For(i=0;1¢«
temp_add[i] = @;

;i

5 1<
HLS pipeline
i85 < 5 J+0H
temp_add[j] += dataln
* layerWeight

*point + i+j
*point + i+j];|

i=1; ix
HLS unroll
temp_add[@] += temp_add[i];

¥

5 isn){

dataOut_final[point] = temp_add[@];

Figure 2: Optimized Kernel Code

C. SmartSSD Application

We began interfacing with the SmartSSD by call-
ing xbutil validate, which would verify read/write
functionality to SmartSSD, to ensure that the device
was programmed and connected properly to the Host
Server.

Next, we developed a new Application Project in
Vitis, with a sample repository provided called P2P
Simple. This design included a simple adder kernel
which would write values from the Host to the FPGA,
compute the kernel, and read back from the FPGA.
We modified this design, with the help of Anthony
Manschula, to include an interface between the SSD
and FPGA directly, with the intent of measuring latency
times between the two. We were able to modify the
host code under Host.cpp, and insert the target syn-
thesizable kernel code from before, computePointHLS.
Vitis provides a 1 stop shop which can synthesize and
build the kernel, host code, and interface to flash the
Kintex FPGA on SmartSSD.

By utilizing the existing OpenCL library, we were
able to set up Peer To Peer (P2P) Buffers between
the Host/SSD and SSD/FPGA. This allowed us to
read/write to the SSD to load in test data, but also
directly interface between the SSD/FPGA without the
interference of the Host computer. This distinction
allows us to discreetly measure timing results of each
stage, as described below.

In the host code, the process runs as follows:

1) Initialize Kernel, SmartSSD, Sim information

2) Write data from Host to SSD in fixed blocks

3) Read input arguments from SSD to FPGA

4) Activate kernel in FPGA

5) Write kernel output from FPGA to SSD

6) Read value from SSD to Host to Verify computa-
tion

D. Measuring Results

The target of the SmartSSD design is to measure
the improvement in data movement delay, so our
design utilizes the chrono C++ library to measure the
time it takes to read data into the FPGA, compute
the kernel, and write data back into the SSD. By
measuring each of these steps individually, we can
determine the speedup for each process, as well as
an overall execution time compared to the baseline
CPU implementation. Additionally, we modified the
original baseline code to measure the same latencies
for reading, computing, and writing data back for the
floating point operations.

V. RESULTS
A. Neural Network with Host

Table || demonstrates the results of running the
CPRE487 Library on the Host server mounted to the
SSD device. Since Layer 2 has the longest latency,
and takes up 68.28% of the total execution time, we
determined our target layer to derive a kernel should
come from Convolution Layer 2 in our library.

B. Convolution Kernel

After synthesizing our design for the SmartSSD ap-
plication, a synthesis report for the kernel is generated
within Vitis. The original kernel design computed a
single convolution point of 800 values in 9107 cycles,
with an estimated latency of 30.354 microseconds. The
full convolution layer computes 100,352 points, which
would lead to an overall delay of around 3.04 seconds

H Layer Time(ms) H

1 47.834

2 (Target) 662.260
3 72.784

4 130.879

5 0.210

6 22.695

7 31.256

8 0.045

9 0.011

10 1.646

11 0.220

12 0.0214
Total 969.861

Table I: Host Code Layer Latency

on its own, excluding the overhead of the kernel
calls themselves from the host code. Since the entire
application was aiming to run faster than near 0.66
seconds, this was unacceptable, and a main motivator
in improving the kernel with more computations,
higher memory utilization, and wider memory busses.

The final optimized kernel, referenced in Figure
took 708,747 cycles to complete, with an estimated
execution time of 2.362 milliseconds. While this is a
marginally larger number of cycles, it is important
to remember that in each kernel call, 1024 convolu-
tion points are being calculated at once. With this
considered, each convolution point takes 694 cycles
to compute, which is a 1312.24% speedup from the
original kernel design. By utilizing more of the FPGA
DRAM within the SSD device and utilizing Loop
Unrolling, a more optimized kernel can be achieved.
We still believe more kernel optimizations could be
achieved inside the for loops, outside of parallelization
or packing memory. This could reduce the kernel cycle
time even further.

C. SmartSSD Application

The collected timing results for the read, compu-
tation, write, and total latency delays are shown in
Tables [MT] through [V] under Appendix A.

Figure [3| demonstrates the drastic overhead in data
movement delays AND kernel computation time. The
overall execution time of the original kernel and
host code was a staggering 32.2476 seconds, over the

baseline target 0.6623 seconds. This motivated us to
explore alternate optimization techniques, which were
referenced above under the Methodology section. It
can be seen that marginal gains are made for each
optimization except when adding multiple axi busses
in parallel. The target SmartSSD application started
to attain similar execution time after parallelizing the
kernel computations, and packing more data into the
FPGA DRAM, as seen by the drop when using 40
kernel points per call and less memory transactions
in general, while still transmitting the same amount
of data to/from the SSD and FPGA.

Total Execution Time (seconds)
40

Execution Time (s)

Figure 3: Total Layer Execution Time

To better visualize this improvement, we generated
plots of the total execution time with the baseline CPU
application and only the measurements with 40, 90,
and 1024 kernel calls within the SmartSSD application,
as referenced in Figure [4] A lower execution time over
the baseline process was achieved only when we used
the most packed memory calls we could, with 1024
convolution points in one kernel call.

The main benefit of collecting individual timing
measurements for the read, compute, and write trans-
actions was that we could analyze the speedup over the
baseline for each kernel design, referenced in Figure
As expected from our timing results, only the final
optimization with 1024 concurrent convolution points
in a single kernel call achieved a higher speedup.
Notably, the latency for the high bandwidth data
reads significantly decreased, leading to a speedup of
174.87% for the final 1024 point kernel configuration.
The final convolution kernel achieved a total speedup
of 138.61%.

Total Execution Time (seconds)
15

Execution Time (s)

0o
Baseline

40 Points Per Call 90 Points Per Call 1024 Poinis Per Call

Figure 4: Total Layer Execution Time with Multiple Kernel
Points

Speedup of Baseline and N Points Per Call for Individual and
Total Steps

B Baseline [l 40 Points Per Call
200.00%

90 Points Per Call [l 1024 Points Per Call

150.00%
100.00%
50.00%

0.00%

Read Data Compute ‘Write Data Full Operation

Figure 5: Speedup

Figure 6] displays the relative amount of time each ap-
plication spent on computation versus data movement
(read and write transactions). As the kernel becomes
more packed, and the read/write latencies improve
for the SmartSSD application, the percent of data
movement reduces from the baseline 70.50% down
to 53.82%, while achieving a faster overall execution
time. This helps to reduce the gap in data movement
delays, as referenced in related works. A tabular output
of this data is represented in Appendix A under Table

VI

Corresponding plots for each individual latency for
the total convolution layer are displayed in Figures
through [9] in Appendix A. Separate graphs for the
read, compute, and write delays for the baseline and
kernel optimizations with multiple convolution points
are referenced in Appendix A in Figures [10| through

Relative Execution Time of Computation Vs. Data Movement
W computation % [l Data Movement %
100.00%

75.00%

50.00%

25.00%

0.00%

Baseline

40 Points 90 Points 1024 Points

Figure 6: Relative Execution Time of Computation and Data
Movement

VI. ANALYSIS

In general, the collected results show that SmartSSD
is a viable platform for an image inference application,
specifically by integrating a high-bandwidth floating
point multiply-accumulate module. While the compu-
tation time of the kernel was still less than the baseline
CPU application, the speedup of the high-bandwidth
read transactions for the FPGA from the SSD showed
a wide margin for improvement. While the kernel still
took slightly longer to compute, this does not mean
that the kernel cannot be optimized further with more
parallelization when computing a single convolution
point, or even computing multiple convolution points
in parallel at once. Since the host code is set up, it
would be trivial to optimize this code within Vitis HLS
for an improved target design.

One surprise from the results was that the write data
delay from the FPGA kernels still took more time than
the baseline code. This could be due to the delay for
writing 1 block of 1024 entries back being too small
to benefit from an improved speedup. Similar to the
original designs, which read/wrote 5 1KB blocks per
kernel call, it shows that low bandwidth usage with
SmartSSD is less effective than many common CPU
applications. We were surprised at the overhead with
timing the host code control for activating the kernel,
and reading/writing to the SSD with the pwrite and
pread commands. By reducing the amount of these
calls, and widening the bandwidth on the PCle bus to
the FPGA, a higher speedup can be achieved. Perhaps
there is a way to store the resulting convolution points
in the FPGA DRAM, and have a separate kernel write
back every single convolution point at once, which

could widen the block transfers in a similar fashion to
the read data optimizations.

The most ideal result is that while speeding up
the target design, the percent of time spent on data
movement overall increased for every single kernel
application with multiple convolution points, seen in
Figure [6] While attempting to speed up the design,
the amount of time spent on moving data to/from the
FPGA was reduced when increasing the memory trans-
action bandwidths. By reducing the data movement
delay, it opens more opportunity to optimize the target
design on the FPGA kernel, which is open to many
resources with Xilinx documentation online. Previously,
the design would be limited by data movement, which
could seldom be improved due to limititations of the
common CPU structure and cache hierarchy.

VII. FUTURE WORK

With the host code and project structure with
SmartSSD set up, improvements could be made such as
optimizing the kernel for a lower latency, expanding the
Host code interface for more applications, or adding
improved timing analysis procedures. Other works
have explored more modular approaches to compiler
CNNs into RTL instead of a C compiler, which may
be a great addition to this work [14]. This is only one
layer of the 487 framework, and seeing it functional in
SmartSSD provides a baseline for the implementation
of other layers, with the proof that speedup can be
achieved by reducing the latency of data movement.
Regardless, through this work, we hope that we can
help other students and graduate researchers with
SmartSSD, regardless of the application.

VIII. CONCLUSION

Overall, the high bandwidth requirement for a neural
network interface has provided a great example of a
useful project to utilize SmartSSD. Through utilizing
the given CPRE 487 neural network inferrence library,
we have gained a large sum of knowledge about
the Vitis toolflow and how SmartSSD can be utilized.
Through developing this framework, we have learned
more about Vitis HLS synthesis and what types of
kernels would be optimal for the SmartSSD application.
Alongside this, we have learned about potential ways to
analyze I/0 latency between the SmartSSD and FPGA
through the use of Peer to Peer connections in Vitis,
which allows direct read/write access between the SSD

device and FPGA within SmartSSD, without the host
needed. By utilizing SmartSSD we have shown benefits
for high bandwidth image inferencing applications by
reducing the data movement latency.

IX. RESPONSIBILITIES

Shared Responsibilities

- Report Writing
. Presentation Development
- Results Analysis

Jake’s Responsibilities

« SmartSSD Background Literature Search
« SmartSSD Bringup
« Vitis Research

William’s Responsibilities

« Neural Network Background Literature Search
Neural Network Host Bringup

Neural Network Dataset Classification

Other Layer Implementation Exploration + Imple-
mentation

REFERENCES

1

J. Do, V. C. Ferreira, H. Bobarshad, M. Torabzadehkashi,
S. Rezaei, A. Heydarigorji, D. Souza, B. E Goldstein, L. Santiago,
M. S. Kim, P M. V. Lima, E M. G. Franga, and V. Alves, “Cost-
effective, energy-efficient, and scalable storage computing for
large-scale ai applications,” ACM Trans. Storage, vol. 16, oct
2020.

Z. Wang, H. Huang, J. Zhang, and G. Alonso, “Shuhai: Bench-
marking high bandwidth memory on fpgas,” in 2020 IEEE
28th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pp. 111-119, 2020.

D. Fakhry, M. Abdelsalam, M. W. El-Kharashi, and M. Safar, ‘A
review on computational storage devices and near memory
computing for high performance applications,” Memories -
Materials, Devices, Circuits and Systems, vol. 4, p. 100051, 2023.
J. H. Lee, H. Zhang, V. Lagrange, P. Krishnamoorthy, X. Zhao,
and Y. S. Ki, “Smartssd: Fpga accelerated near-storage data
analytics on ssd,” IEEE Computer Architecture Letters, vol. 19,
no. 2, pp. 110-113, 2020.

N. Prakriya, Y. Yang, B. Mirzasoleiman, C.-J. Hsieh, and J. Cong,
“Nessa: Near-storage data selection for accelerated machine
learning training,” in Proceedings of the 15th ACM Workshop
on Hot Topics in Storage and File Systems, HotStorage '23, (New
York, NY, USA), p. 8-15, Association for Computing Machinery,
2023.

M. Soltaniyeh, V. L. Moutinho Dos Reis, M. Bryson, R. Martin,
and S. Nagarakatte, “Near-storage acceleration of database
query processing with smartssds,” in 2021 IEEE 29th Annual
International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), pp. 265-265, 2021.

[2

[3

4

[5

[6

[7]

(8]

191

[10]

[11]

[12]

[13]

(14]

M. Soltaniyeh, V. Lagrange Moutinho Dos Reis, M. Bryson,
X. Yao, R. P Martin, and S. Nagarakatte, “Near-storage pro-
cessing for solid state drive based recommendation inference
with smartssds®,” in Proceedings of the 2022 ACM/SPEC on
International Conference on Performance Engineering, ICPE '22,
(New York, NY, USA), p. 177-186, Association for Computing
Machinery, 2022.

E. Bank Tavakoli, A. Beygi, and X. Yao, “Rpknn: An opencl-
based fpga implementation of the dimensionality-reduced knn
algorithm using random projection,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 30, no. 4, pp. 549-
552, 2022.

W. Qiao, J. Oh, L. Guo, M.-C. E Chang, and J. Cong, “Fans:
Fpga-accelerated near-storage sorting,” in 2021 IEEE 29th An-
nual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 106-114, 2021.

S. Salamat, A. Haj Aboutalebi, B. Khaleghi, J. H. Lee, Y. S. Ki, and
T. Rosing, “Nascent: Near-storage acceleration of database sort
on smartssd,” in The 2021 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA '21, (New York, NY,
USA), p. 262-272, Association for Computing Machinery, 2021.
S. Salamat, H. Zhang, Y. S. Ki, and T. Rosing, “Nascent2: Generic
near-storage sort accelerator for data analytics on smartssd,”
ACM Trans. Reconfigurable Technol. Syst., vol. 15, jan 2022.

J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt,
“Query processing on smart ssds: opportunities and challenges,”
in Proceedings of the 2013 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 13, (New York, NY,
USA), p. 1221-1230, Association for Computing Machinery,
2013.

M. Soltaniyeh, V. L. Moutinho Dos Reis, M. Bryson, R. Martin,
and S. Nagarakatte, “Near-storage acceleration of database
query processing with smartssds,” in 2021 IEEE 29th Annual
International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), pp. 265-265, 2021.

Y. Ma, N. Suda, Y. Cao, J.-s. Seo, and S. Vrudhula, “Scalable and
modularized rtl compilation of convolutional neural networks
onto fpga,” in 2016 26th International Conference on Field
Programmable Logic and Applications (FPL), pp. 1-8, 2016.

APPENDIX A

Baseline Original FPGA Reduced Write Stride 4 Reduced Read 2 m_axi busses 40 Points 90 Points 1024 Points
Point Time (us) 35.3864 173.0000 169.4000 159.4000 92.6000 91.0000 11.5750 7.1378 2.6463
Layer Time (s) 0.4644 17.3609 16.9996 15.9961 9.2926 9.1320 1.1616 0.7163 0.2656
Layer Difference (s) 0.0000 -16.8965 -16.5352 -15.5317 -8.8282 -8.6676 -0.6972 -0.2519 0.1988
Speedup 1.0000 0.0267 0.0273 0.0290 0.0500 0.0509 0.3998 0.6483 1.7487
Table II: SSD Read Latency
Baseline Original FPGA Reduced Write Stride 4 Reduced Read 2 m_axi busses 40 Points 90 Points 1024 Points
Point Time (us) 2.5044 263.6000 295.4000 248.2000 246.8000 211.8000 6.7900 4.5067 2.4986
Layer Time (s) 0.1953 26.4528 29.6440 24.9074 24.7669 21.2546 0.6814 0.4523 0.2507
Layer Difference (s) 0.0000 -26.2574 -29.4486 -24.7120 -24.5715 -21.0592 -0.4860 -0.2569 -0.0554
Speedup 1.0000 0.0074 0.0066 0.0078 0.0079 0.0092 0.2867 0.4319 0.7791
Table III: Single Point Kernel Computation Latency
Baseline Original FPGA Reduced Write Stride 4 Reduced Read 2 m_axi busses 40 Points 90 Points 1024 Points
Point Time (us) 0.0590 82.8000 35.2000 38.6000 49.8000 59.2000 1.3300 0.3378 0.0299
Layer Time (s) 0.0025 8.3091 3.5324 3.8736 4.9975 5.9408 0.1335 0.0339 0.0030
Layer Difference (s) 0.0000 -8.3066 -3.5299 -3.8711 -4.9950 -5.9383 -0.1309 -0.0314 -0.0005
Speedup 1.0000 0.0003 0.0007 0.0007 0.0005 0.0004 0.0190 0.0747 0.8440
Table IV: SSD Write Latency
Baseline Original FPGA Reduced Write Stride 4 Reduced Read 2 m_axi busses 40 Points 90 Points 1024 Points
Point Time (us) 6.5994 321.3449 277.1923 240.3659 174.4021 179.0099 14.7142 9.5404 4.7612
Layer Time (s) 0.6623 32.2476 27.8168 24.1212 17.5016 17.9640 1.4766 0.9574 0.4778
Layer Difference (s) 0.0000 -31.5853 -27.1545 -23.4589 -16.8393 -17.3017 -0.8143 -0.2951 0.1845
Layer Speedup % 1.0000 0.0205 0.0238 0.0275 0.0378 0.0369 0.4485 0.6917 1.3861
Table V: Total Single Point Latency

Baseline 40 Points Per Call 90 Points Per Call 1024 Points Per Call

Read Data 100.00% 39.98% 64.83% 174.87%

Compute 100.00% 28.67% 43.19% 77.91%

Write Data 100.00% 1.90% 7.47% 84.40%

Full Operation 100.00% 44.85% 69.17% 138.61%

Table VI: Speedup of Multi-Point Kernel Designs

Baseline 40 Points 90 Points

1024 Points

Data Movement % 70.50% 65.23% 63.54%
Computation % 29.50% 34.77% 36.46%

53.82%
46.18%

Table VII: Relative Data Movement Vs. Computation Time

APPENDIX B

SSD Read Layer Execution Time (seconds)
20

Execution Time is)

& > & & & &
i ¢ (o <
& ¢ & & T
¢ F & & & & & &
S z & & &
d & & & @ < <°
& & s
& &

Figure 7: Read Layer Execution Time

Kernel Execution Time (seconds)
30

20

s
£
= 1
=
El
g
H
il
0
N N N
@\dﬂ o @r @Q“ & o v & &
oF N & o N R & ra ra
& K & i
& o & & ;
R & g <& COI
o B LY &

Figure 8: Compute Layer Execution Time

SSD Write Layer Execution Time (seconds)
10

Execution Time (s)

& L3 =3 = =3 =3 3
5 Qd” %:7;} & uz'*’b & & < <
& K R S G
S & & & ® &
& &> ¥ 5 & &
& e & < < &
& S

Figure 9: Write Layer Execution Time

10

SSD Read Layer Execution Time (seconds)
1.25

075

050

Execution Time (s)

025

0.00

Baseline 40 Points Per Call 90 Points Per Call 1024 Points Per Call

Figure 10: Read Layer Points Execution Time

Kernel Execution Time (seconds)

08
06

s

£

E 04

<

=1

3

3

H

g

i
0.2
0.0

Baseline 40 Points Per Call 90 Points Per Call 1024 Points Per Call

Figure 11: Compute Layer Points Execution Time

SSD Write Layer Execution Time (seconds)
0.15

Execution Time (s)

0.00
Baseline

40 Points Per Call

90 Points Per Call 1024 Points Per Call

Figure 12: Write Layer Points Execution Time

	Introduction and Motivation
	Related Works
	Neural Network Inference with SmartSSD
	Other SmartSSD Applications

	Solution Approach
	Neural Network with Host
	Convolution Kernel
	SmartSSD Application
	SmartSSD Analysis
	Summary

	Methodology
	Neural Network with Host
	Convolution Kernel
	SmartSSD Application
	Measuring Results

	Results
	Neural Network with Host
	Convolution Kernel
	SmartSSD Application

	Analysis
	Future Work
	Conclusion
	Responsibilities
	References

